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Abstract

Studies of the information content of dividends show that dividend changes convey information about

earnings in the next four quarters. We examine the extent to which dividend changes contribute to

predicting earnings in the subsequent four quarters and find marginal contributions based on both in-

sample and out-of-sample tests. Further, we use state-of-the-art machining learning models to examine

the contributions of dividend changes. These models deliver improved predictions of future earnings, but

the contribution of dividend changes remains marginal that is robust across a variety of machine learning

specifications. Our results suggest that the predictive power of the dividend changes is marginal even

when these dividend changes convey information about future earnings.
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1 Introduction

One of the most debated topics in corporate finance is whether a firm’s dividend change conveys information about its

future earnings. While both theory and surveys point to dividend changes conveying information about future earnings

(e.g., Miller and Modigliani (1961) and Brav et al. (2005)), the empirical evidence has been mixed. Studies such as

Brickley (1983), Aharony and Dotan (1994), and Nissim and Ziv (2001) all find that future earnings performance is

directly related to dividend changes. However, these studies provide contradicting results about the persistence and

the economic significance of future earnings response to such dividend announcements. By contrast, Watts (1973),

Penman (1983), Benartzi et al. (1997), and Grullon et al. (2005) find no relation between future earnings and dividend

changes. These studies propose that market reaction to changes in dividend should be realized elsewhere or even

explained through behavioral theories.

More recently, Ham et al. (2020) revisit the empirical debate and document a positive relation between future earnings

performance and dividend changes. They note that most of the previous disagreements about this empirical relation

can be resolved by focusing on quarterly data and using an event-window approach to compute future earnings versus

fiscal year approach previously used to compute future earnings. We continue this line of research, reexamine this

relationship and then focus on the predictive power of the dividend changes. In particular, we investigate the extent to

which the relation between future earnings and dividend changes help better predict future earnings. Historically, the

former relationship was evaluated using hand-crafted functional forms between dividend changes and future earning

changes including a set of control variables by applying conventional econometrics techniques.

In this study, we depart from the realm of linear regression analysis by relying on the strength of ensemble Machine

Learning (ML) algorithms in automatic discovery of interactions between the relevant variables without any prior

assumptions about the nature of this relationship. ML algorithms offer spectrum choices from linear models to boosted

trees and neural networks designed to approximate complex non-linearity. Some of these algorithms are also robust

to outliers and multicollinearity among the independent variables which make them ideal candidates to explore the

intricate relationships such as ours. In addition, feature ablation studies, feature importance measurement, parameter

penalization and out-of-sample evaluations help avoid overfitting biases and false discoveries.

We build, train and test several state-of-the-art ensemble and boosting classification and regression Machine Learning

(ML) algorithms to evaluate the modeling and predictive power of dividend changes. See, for instance, Dietterich

(2000), Breiman (2017), Zhou (2012), Schapire (2003), Friedman (2001), Natekin and Knoll (2013) and references

therein. Following Ham et al. (2020), we adopt an event-window approach to distinguish the earnings after the

dividend change announcements versus the fiscal year approach. We find that the dividend changes contain some

information about the earnings changes in upcoming years post dividend announcements. Nonetheless, the incremen-

tal information content is marginal and the feature importance of dividend changes is less than 2%. This finding is

robust across different algorithms examined in this study. In addition, we find that the predictive power of dividend
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changes is very low in predicting unexpected changes in future earnings. Ablation studies, feature importance scorers,

and SHAP values point to the marginal contribution of dividend changes to the overall R-squared in all ML models

applied in this study. In addition, in a restricted model without any control variables, the R-squared of ML regression

models is negligible and the accuracy of ML classifiers are as low as the ZeroR model. All of which points to the

relatively low marginal contribution of dividend changes to modeling the evolution of unexpected future earnings.

Accordingly, we conclude that although future earnings are related to dividend changes, the dividend changes have

low[marginal] modeling and predictive power.

This study makes at least three key contributions to the literature on the relation between future earnings and dividend

changes. First, we confirm that dividend changes convey marginal information about future earnings. Second, given

that future earnings are related to dividend changes, we investigate whether this knowledge is beneficial in predicting

future earnings and we find that this is not the case. Third, to our knowledge, this is the first study that employs

state-of-the-art Machine Learning (ML) algorithms, which do not impose any functional or distributional assumptions

on the models used to evaluate the relation between future earnings and dividend changes. We find 50% higher out-

of-sample predictive R-squared relative to preceding literature that is robust across a variety of machine learning

specifications. Nonetheless, the prediction power of dividend changes remains limited. Thus, we conclude that

machine learning algorithms have the potential to improve our empirical understanding of this highly debated topic

over the past 60 years.

While dividend increases (cuts) are associated with positive (negative) abnormal returns, the drivers of these abnormal

returns have confounded researchers for a long time. Although there are several theories to explain this observation,

a lot of the literature has focused on earnings as a possible driver and we follow this line of research.1 Lintner

(1956) is the first to document a connection between earnings and dividend changes, reporting that managers increase

dividends only when they believe that the current earnings increases are permanent. After this, Miller and Modigliani

(1961) model posits that dividend changes convey managerial information about future earnings, predicting a positive

relation between the two variables. Nonetheless, the empirical evidence has been mixed for several decades.

The empirical evidence on the relation between future earnings and dividend changes is extensive and we cannot

provide detailed discussions of this literature here. Rather we focus on the more recent result from Ham et al.

(2020). They note that most of the previous disagreements about the empirical relation can be resolved by focusing

on quarterly data and using an event-window approach to compute future earnings. They report a positive relation

between dividend changes and earnings in the next four quarters and that the increase in earnings persists for the

subsequent two years. This is consistent with Aharony and Dotan (1994) finding that dividend increases convey

information about earnings in the subsequent four quarters. Thus, the evidence on the relation between dividend

1For instance, the wealth redistribution hypothesis suggests that the positive abnormal return associated with dividend
increases is due to redistribution wealth away from bondholders to shareholders and the negative price reaction to dividend
cuts capture redistribution of wealth in the opposite direction (e.g., Handjinicolaou and Kalay (1984)).
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changes and earnings performance in the subsequent four quarters appears clear: there is a positive relation. Given

that dividend changes convey information about the next four quarters’ earnings, we ask a simple question. While

earnings in the four quarters after a dividend change are related to the dividend change, it is unclear whether this

knowledge translates into a better prediction of earnings in the four quarters after a dividend change.

The rest of the paper is organized as follows. Section 2 presents the dataset and its descriptive statistics. Section

3 describes a benchmark model adopted from previous literature. Section 4 introduces machine learning algorithms

used in our analysis, presents empirical findings and discusses the robustness of results. Section 5 concludes.

2 Data

We use the same dataset as in Ham et al. (2020), which contains the data for the ordinary common stocks (nonfinancial

firms only) listed on NYSE, Amex, and Nasdaq exchanges over the period of 1971-2016. We record observations in

which the firm made a previous quarterly dividend declaration in the past 180 days. Dividend declarations data are

from the Center for Research in Securities Prices (CRSP) events database.2 Table 1 presents summary statistics of

the dataset. Overall, the sample has 165,558 observations where 14.22% (1.12%) of dividend declarations exhibit

increase (decrease) in the level of dividends compared to the prior quarter with average dividend increase (decrease)

of 18.38% (43.46%). The table shows that dividend change announcements tend to be preceded by return of the same

sign as dividend change across different horizons up to one year before the announcement date. Earnings changes are

computed as the difference between the sum of the four consecutive quarterly earnings announced after the dividend

change and earnings for the four quarters before the dividend change, where earnings is income before extraordinary

items. Dividend Changes is the percentage dividend changes in a quarter relative to the dividends in the previous

quarter.

3 Benchmark Models from Prior Literature

As a benchmark for comparison, we follow Ham et al. (2020) and measure the information content of dividend changes

(∆DIV ) about future earnings. We reproduce some of its results that are summarized in this section. We estimate

model 1 by regressing unexpected earnings changes over one year (four quarters) after dividend change announcements

on the percentage dividend changes and a set of control variables. These control variables include past returns from

one-month up to one-year, level and change of the past quarterly earnings up to four quarters before dividend change

announcements, and six nonlinear controls for the level and change of the corresponding dependent variable for a

year before the dividend announcements.

2See, Ham et al. (2020) for further details about the dataset.
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∆Eit+n = β0 + β1∆DIVit +

j=19∑
j=2

βjControls+ εit+n (1)

The regression analysis in model 1 is repeated using earnings changes over the second and the third year after

dividend change announcement to document the persistence of changes in earnings. As we are interested in the

relative contribution of the dividend changes to the model, we conduct a similar regression in the absence of dividend

changes as a covariate, as shown in model 2. The left (right) Panel in Table 2 presents the results of regression

analysis in 1 (with ∆DIV ) and 2 (without ∆DIV ), including the coefficients, t-stats, and adjusted R-squared over

the next three years post dividend change announcements. We also conduct a similar regression analysis as in model

3 that only contains dividend changes without any control variables. The results of this analysis are reported in Table

3.

∆Eit+n = β0 +

j=18∑
j=1

βjControls+ εit+n (2)

∆Eit+n = β0 + β1∆DIVit + εit+n (3)

In addition, we examine the persistence of earning changes following dividend change announcements using alternative

measures of dividend news. As in Ham et al. (2020), we use percentile rank of dividend changes to control for the

skewness in the distribution of dividend changes. These results are reported in Table 4. Last, we measure the

robustness of results by using a different measure of net income. Table 5 shows the coefficients and R-squared when

all models are estimated using gross profit as a measure on net income, both as dependent variables and as some of

control variables.

The left panel in Table 2 shows that the dividend changes coefficient (β1 = 0.0255 and t-stat = 5.13) is highly

significant in the first year after dividend change announcements and remains significant in the second (third) year

post announcements with β1 = 0.0182 and t-stat = 3.18 (β1 = 0.0183 and t-stat = 2.67). In the absence of all

control variables, Table 3 shows that dividend changes coefficient is marginally higher and remains statistically

significant over the three years post dividend change announcements. The coefficients are respectively 0.0309 (4.8521),

0.0199 (2.6698), and 0.0177 (2.0712) with t-stats in parentheses. Comparing predictive power of the models 1-3, all

three models show that including ∆DIV produces a very marginal gain in modeling future earnings. For instance,

comparing the R-squared in Column I to that in Column IV of Table 2 shows ∆DIV increases the R-squared by

only 1.19% ( 0.1866
0.1844

− 1). The similar results can be inferred by comparing Akaike and Bayesian Information Criterion

across two models. Model 3 also confirms this finding as the reported R-squared statistics in 3 are very close to zero

across all three years post dividend announcements. Nonetheless, the point estimates of the ∆DIV is statistically
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significant. The results in the first three columns in Tables 4-5 reproduced those in Panels A and B of Table 5 in

Ham et al. (2020). The last three columns in each table show that the model’s goodness-of-fit remains the same in

the absence of ∆DIV .

4 Machine Learning Models

We use a set of candidate ML models for classification and regression analysis. This includes linear classifiers such

as Naive Bayes classifier and logistic regression (with different parameter penalizations such as lasso, and elasticnet),

and non-linear classifiers such as Support Vector Machines, Random Forests, Decision Trees, and Neural Networks.

In addition, we conduct regression analysis using Gradient Boosting Trees and Random Forests. We aim to provide a

detailed description of the models that make it self-explanatory in particular for readers with limited prior knowledge

of these models. In general, the purpose of machine learning models is to recognize patterns from data in order to

make predictions or decisions without hand-crafting or imposing explicit relationships ex-ante. For the entire analysis,

we focus on supervised learning models where the data labels identify covariates and independent variables.

Our analysis relies on two categories of models, regression models and classification models. Regression analysis aims

to examine the information content and predictive power of dividend changes together with a set of control variables

similar to those used in the benchmark OLS analysis. We explore the extent to which dividend changes is useful in

predicting future unexpected earnings. The supervised classification models aim to predict whether positive/negative

change in future unexpected earnings is related to positive/negative change in dividends, while controlling for several

other covariates. For both categories, we evaluate the extent to which the predictive power/classification is persistent

over three years post dividend change announcements. In addition, we measure the robustness of results using

different measures of earnings change and dividend change.

4.1 Gradient Boosting Trees

Gradient Boosting Trees (GBT) are nonparametric machine learning models that recursively and sequentially parti-

tion the space of independent variables into smaller regions with similar observations, fitting the trees sequentially

given the residuals from the previous tree to minimize the residual errors, and then combine (boost) forecasts from

these simplified decision trees into a single forecast. See, Freund (1995), and Friedman (2001) among others. The

boosting theory suggests that the combination of several smaller trees, as an ensemble, increases stability and helps

prevent overfitting. GBT minimizes a loss function by gradient descent (i.e., mean squared errors of regression) to

fit subsequent trees. The process is repeated for a specified number of iterations or until a stopping criterion is met.

GBT often incorporates regularization techniques to find the right balance between training accuracy and gener-

alizability to prevent overfitting. Training a GBT model requires tuning hyperparameters of the model, including
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number of trees, learning rate, and depth of the tree. Increasing the number of trees in the ensemble could increase

the performance but also increases complexity and computational time. Learning rate, also known as the shrinkage

parameter, controls the contribution of each tree to the final prediction. A lower learning rate requires more trees to

achieve the same performance but can improve generalization and prevent overfitting. Deeper trees in the ensemble

could capture more complex relationships in the data but are more prone to overfitting. Limiting the depth of a tree

helps prevent overfitting and improves generalization.

4.2 Random Forests

Random Forest Models are another nonparametric supervised learning algorithm that combines the prediction of

a collection of decision trees to predict the outcome. See, for instance, Breiman (2001), Louppe (2014), and Biau

(2012). They belong to a general class of bootstrap aggregation procedure (also known as bagging) that randomly

samples the training data with replacement to create multiple bootstrap samples. Each tree in the ensemble is trained

on a different bootstrap sample drawn by bagging procedure, and then the average of the forecasts is used for final

prediction to ensure diversity among the trees, reducing variations, and stabilizing the trees’ predictive performance.

Splitting criteria at each node of the decision tree (also known as dropout) lets the model select a random subset of

variables to reduce the correlation between trees, further improve the variance reduction, and ensure the robustness

of the ensemble given the noise in the dataset.

Training a random forests model requires tuning hyperparameters, including number of trees, maximum depth of the

tree, and the minimum sample split, among others. Although deeper decision trees in the forests could capture more

complex relationships in the data, such models are more prone to overfitting. Limiting depth of trees helps prevent

overfitting and improves generalization. It is important to find the minimum number of samples required to split an

internal node. Increasing this value can prevent the trees from splitting too early, leading to a simpler model and

reducing overfitting. To ensure the reproducibility of results, a random seed should be set ex-ante. The optimal set

of hyperparameters can be obtained through various techniques such as grid search, random search, and Bayesian

optimization. Model performance can be measured using mean squared errors, mean absolute errors, or R-squared.

4.3 Regression Analysis with Machine Learning

Linear regression models similar to those applied historically in this literature can be thought of as the first order

approximation of the data generating process. These models may restrict our capability to capture the true relations

embedded in the observed data. Generalized linear models allow for more flexibility and could capture nonlinear

relations to some extent. Nonetheless, without priori assumptions about nonlinear interactions between independent

variables, these models become computationally infeasible when the set of independent variables becomes larger.

Machine learning algorithms are alternative non-parametric approaches that accommodate nonlinearity among pre-
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dictors. Unlike conventional regressions these models do not require a priori as they consider all possible interactions

across predictors while remaining computationally feasible. In this study, we use particular implementations of the

Gradient Boosting Regression Trees (GBRT), Random Forests, and Neural Networks.

In our analysis, we use the same set of variables as those in Ham et al. (2020). That includes dividend changes,

past returns, past earnings (both level and changes) and a set of interaction variables. We start with the same set of

variables to make sure that a consistent comparison is feasible between our findings and those reported in previous

studies. We also repeat our analysis by dropping all interaction variables and rely on the capacity of machine learning

models to detect and capture nonlinear relations between predictor variables. We evaluate each model using a 10-fold

cross validation procedure. In this procedure, the dataset is divided into 10 equal subsets (fold). The training is

done on nine of the 10 folds and validation (performance measurement) is done on the remaining fold. The process

is repeated 10 times using a fixed random seed, with each fold serving only once as the validation set. The validation

results across all 10 folds are then aggregated to generate a performance statistic such as R-squared, implying that

this is an out-of-sample validation technique.

Table 6 reports predictive R-squared for Gradient Boosting Trees (GBT) and Random Forests (RF), and R-squared

for Ordinary Least Squares (OLS) for models 1-2 in three years post dividend announcements. The results in this

table show that GBT and RF outperform OLS with and without ∆DIV as a covariate. Panel A in Table 6 shows

that in-sample R-squared of GBT and OLS models with (without) ∆DIV are 0.5161 (0.5188) and 0.1866 (0.1844)

respectively. Using a 10-fold cross-validation procedure, the out-of-sample R-squared of the GBT model reduces

to 0.2702 (0.2662) with (without) ∆DIV , which is still 45% (44%) better than in-sample R-squared of the OLS

model. Evaluating the performance of the models in capturing future earnings changes two and three years after the

dividend changes, we note that GBT and RF models retain more than 80% (64%) of their performance in-sample

(out-of-sample) while this is only about 50% for the OLS model in-sample.

Next, we drop all interaction (non-linear) variables and repeat regression analysis. Although feature engineering

in machine learning is a critical step in the model development pipeline and can have a significant impact on the

performance of the final model, we evaluate the robustness of our results in this analysis. This new set of variables

allows us to solely rely on the capacity of machine learning models to detect and capture nonlinear relations between

predictor variables. Entries in Panel B of Table 6 suggest that GBT remains the best performing model in terms of

goodness-of-fit statistics in the absence of all interaction variables. The results hold over the second and third year

with and without ∆DIV in both in-sample and out-of-sample analysis. Although it was expected, we note that the

OLS model loses around 35% of its R-squared in the absence of interaction variables whereas the GBT model only

loses around 4% of its R-squared in capturing earnings changes in the first year after announcements.

We quantify the marginal contribution of each variable (feature) in ML regression models to the overall goodness-of-

fit statistics. We identify the influential variables according to a notion of feature importance, where features with
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higher importance scores are considered more important and the scores sum to one. In linear regression models,

the magnitude of the coefficient associated with each independent variable indicates its importance where the larger

coefficients suggest stronger relationships with the dependent variable. There are different approaches to measure

feature importance in regression-based ML models. In our tree-based models, feature importance score is based on

how frequently a feature is used to split the data across all decision trees in the ensemble. Figures 1-4 present the

feature importance scores based on the model performance in the first, second, and third year following the dividend

announcements. In all figures, the left (right) panel shows scores with (without) ∆DIV as an independent variable

in the respective model. Figures 1 and 2 report scores when the models are evaluated using a 10-fold cross-validation

process whereas 1 and 2 show in-sample scores measured over the entire sample and thus more consistent with OLS

results. Figures 2 and 4 report scores when all interaction variables are dropped from the model.

The left panel in Figure 1 shows that ∆DIV is ranked as the least important variable in OOS of GBT in all three

years post earning announcement. In the absence of all interaction variables, the left panel in Figure 2 confirms this

finding as ∆DIV has consistently the lowest score. Figures 3-4 also show that ∆DIV is the least favorable variable in

explaining earnings changes when evaluating the GBT model in sample in all three years post earning announcement.

Figures 1-4 show that in the absence of ∆DIV as a covariate, the relative feature importance of all variables in the

right panels remain comparable to those in the left panels across all three years. Comparing the GBT’s importance

scores in Figure 1 and the regression coefficients in Table 2, we observe that the relative contributions of variables to

the performance of the GBT model is relatively comparable to the regression coefficients in 2.

4.4 Classification Analysis with Machine Learning

A classification model aims to assign inputs into one of available classes (categories) based on a series of common

features and patterns that characterize the decision boundary to separate different classes. The question at hand

can also be formulated as a supervised learning classification problem, in which the goal is to predict whether

positive/negative changes in future unexpected earnings is related to positive/negative change in dividends, while

controlling for several other covariates. We train different types of classifiers to examine the impact of positive versus

negative dividends changes in direction (positive versus negative) of the unexpected changes in future earnings.

Supervised machine learning classification models require labeled training dataset. Labeled dataset refers to data

in the form of pairs of input (independent variables) and the corresponding correct label (dependent variable) for

each observation (data point or entry). The representation of inputs plays an important role in the accuracy (or

success rate) of a supervised machine learning model. Typically, the input is transformed into a feature vector, which

contains several features (independent variables) that describe the observation. The number of features should not

be too large, because of the curse of dimensionality, but should contain enough information to accurately predict the

output/label.
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We quantify the performance of each classifier by measuring its Accuracy, Area Under the Receiver Operating

Characteristics (AUROC), Precision, Recall, and F1-score. Accuracy measures the overall proportion of the correct

predictions. Mathematically, it is TP+TN
TP+TN+FP+FN

where TP (FN) is the total number of true positive (false negative)

instances predicted by the model. Accuracy shows how often the model made a correct prediction across the entire

dataset. This is a reliable measure if the dataset is class-balanced with a relatively similar number of observations

from each class. However, if the data set is imbalanced and the majority of rows is one or zero, the model can

obtain high accuracy in predicting the majority class but low accuracy in predicting the minority class. To define

a benchmark accuracy score a baseline model (also known as ZeroR classifier) is required that simply predicts the

majority category (class) for all instances in the dataset. In other words, it trivially predicts the most frequent class

as the predicted class for every observation. Any model must achieve an accuracy score better than the baseline value

to be considered useful in distinguishing the two classes.

The Area Under the Receiver Operating Characteristics (AUROC), also known as AUC, is another performance

evaluation metric used in our analysis. It measures the ability of the model to distinguish between the two classes,

positive class (class 1) and negative class (class 0), across different threshold values. It quantifies the overall per-

formance of the classification model by calculating the area under the ROC curve. It is defined based on the ROC

curve that plots the true positive (TP ) rate versus the false positive (FP ) rate at different classification thresholds.

The thresholds are different probability cutoffs that separate the two classes in binary classifications. The AUC score

ranges from zero to one. The AUC scores closer to one implies that the model has a higher discriminatory power and

could distinguish between two classes more effectively. However, AUC scores closer to 0.5 indicates that the model

performs no better than random guessing. Overall, models with higher AUC scores are preferred all else equal.

Precision is another evaluation metric that quantifies the extent to which the classification model can identify the

positive class while minimizing false positives. It defines the proportion of observations that are correctly classified

as the positive class. Mathematically it is defined as TP
TP+FP

. A higher precision value implies that the model has

a lower rate of false positives, and thus it is more precise in identifying positive instances. Overall, precision score

helps measure the reliability and accuracy of the model.

Precision is often used together with recall (sensitivity) to provide a balanced assessment of a classification model.

Recall measures the model’s ability to correctly identify all positive instances. Mathematically, it is defined as

TP
TP+FN

. A higher recall score indicates that the model is better at identifying positive instances and has a lower

rate of false negatives. In other words, the model is more sensitive to positive instances and has a higher probability

of correctly detecting them. Finally, F1-Score combines Precision and Recall statistics using their harmonic mean,

2× Prisicion×Recall
Prisicion+Recall

to evaluate the balance between the model’s ability to make accurate positive predictions and its

ability to capture all positive instances.

We start our analysis by pre-processing the dataset to make it suitable for classification analysis. We convert the
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dependent variable to a categorical variable with three classes (categories), reflecting the direction of changes in

future earnings. Positive (negative) class is assigned to each observation if earnings changes are positive (negative)

post dividend change announcements. The class of zero is assigned to each observation if unexpected changes in the

future earnings are zero. Since there are only a few observations belonging to class zero, we drop this class and train

all models using only positive and negative classes with assigned labels of 1 and 0 respectively. We train each model

by finding an optimal set of hyperparameters that gives the best performance.

We evaluate the performance of each model given the metrics such as accuracy, AUC, Precision, Recall, and F-

score. In addition, we use feature importance scores to quantify the relative significance of each independent variable

(feature) in classifying/predicting the sign of unexpected earning changes. We identify variables that have the most

influence/influence on the model’s predictions. We also evaluate the importance of each independent variable and its

contribution to the overall performance of the model by systematically removing each variable from the model and

observing the performance of the model in the absence of that variable. This approach, also known as ablation study,

helps identify key components that contribute to performance of the model.

To obtain a more robust estimate of the model’s performance and reduce any possible bias in model evaluation we

train and evaluate models using K-fold cross-validation technique. It involves partitioning the original dataset into

10 equal-sized subsets (folds) and then training and evaluating the model 10 times, each time using one different fold

as the validation set and the remaining nine folds as the training set. This technique gives a more accurate estimate

of how well the model will generalize to unseen data. In particular, it could provide a more statistically significant

estimate of model performance compared to a single train-test split, especially when dealing with small or imbalanced

datasets.

Table 7 reports the classification results. The left panel presents the results for the Gradient Boosting Trees (XGBoost)

and the right panel presents results for the Random Forests classifier adopted in this study. The performance metrics

in each panel are the average scores in 10-fold cross-validation analysis. As in the regression analysis, we conduct

ablation studies to measure the importance of each covariates. Panel A reports accuracy for the baseline benchmark

model in which the classifiers assign the majority class label in the dataset to all observations. Panel B shows that if

dividend change is the only independent variable in the model in absence of all other control variables, the accuracy

of both classifiers are as low as those of the benchmark model. In other words, none of the classifiers make any

better classification than the base case classifier, implying that dividend change contains no incremental information

to improve the predictive power of these classifiers.

We also conduct the classification analysis with all covariates as in Ham et al. (2020). The results are reported

in Panel C, including dividend change, and Panel D in the absence of dividend change. The reported statistics in

Panel C shows that the accuracy of both classifiers improved extensively from 0.59 (0.64) to 0.94 (0.97) for XGBoost

and RF respectively, when all covariates are present. Comparing statistics in Panels C and D, we observe that the
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contributions of dividend change in the accuracy of the classifiers are marginal. Table 8 reports variable (feature)

importance score for each covariates with and without dividends in both classifiers. As can be seen in this table,

dividend change is among the least important features in both classifiers with importance scores of 1.4%. These

results are consistent with those obtained from GBRT models.

We also conduct the classification analysis with all covariates as in Ham et al. (2020). The performance of these

classification analyses are reported in Panel C, including dividend change as an independent variable, and in Panel

D without dividend change. Adding all control variables to the classifiers, Panel C shows that the performance of

both classifiers improved extensively compared to the classifiers that only had dividend change as an independent

variable. For instance, the accuracy score increased from 0.59 to 0.94 for XGBoost and from 0.60 to 0.97 for RF when

all covariates are present. Comparing statistics in Panels C and D, we observe that the contributions of dividend

change in the accuracy of the classifiers are marginal. The performance improvement is consistent across all different

measures. We also measure the importance score for all variables in classification models to rank variables based

on their influence on the model’s prediction. Table 8 reports feature importance scores for each covariates with

and without dividend change in both classifiers. Looking across all covariates, we observe that dividend change is

among the least important features with the importance score of 1.4% in both classifiers. These results are consistent

with those obtained from regression models, confirming our finding about the marginal predictive power of dividend

changes on the unexpected earnings changes.

Re-write: 9 and ?? compares contribution of features wrt. feature importance and shap value. Div

change seems to consistently have one of the lowest feature importance and shap values.

5 Conclusion

Miller and Modigliani (1961)’ proposition that dividend changes convey managerial information about future earnings

sparked active research in empirically investigating the relation between these two variables. Unfortunately, the

evidence has been mixed, particularly when annual dividends and earnings are used. Quarterly dividends and

earnings provide more consistent results, pointing to a positive relation between dividend changes and earnings in

the next four quarters (e.g., Aharony and Dotan (1994) and Ham et al. (2020)). We extend this line of research to

investigate the contribution of dividend changes to modeling and predicting earnings in the next four quarters.

Using standard regression models, we find that the contribution of dividend changes to the models of earnings in the

next four quarters is marginal, increasing the R-squared by only 1.19% at best. Consistent with this, the dividend

changes have minimal predictive power both in-sample and out-of-sample. Next, we use state-of-the-art machine

learning models to investigate both the modeling and predictive power of the dividend changes. We build and train

gradient boosting regression trees, random forest regressions, and a variety of deep neural network regressions and find

12



that the results are no different from those from the standard regressions: dividend changes have marginal modeling

and predictive power. We also confirm these results by building and training several supervised classification models.

Collectively, dividend changes convey information about earnings in the subsequent four quarters, but the information

is marginal in modeling or predicting these earnings.
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Table 1: Summary Statistics

∆DIV = 0 ∆DIV < 0 ∆DIV > 0

Mean Median Mean Median Mean Median

∆DIV 0.0000 0.0000 -0.4346 -0.4974 0.1838 0.1111

Ret(−2,−20) -0.0002 -0.0043 -0.0173 -0.0189 0.0065 0.0017

Ret(−21,−40) 0.0001 -0.0035 -0.0137 -0.0172 0.0043 0.0009

Ret(−41,−60) 0.0029 -0.0010 -0.0100 -0.0106 0.0069 0.0019

Ret(−61,−120) 0.0032 -0.0050 -0.0349 -0.0418 0.0144 0.0046

Ret(−121,−240) 0.0093 -0.0093 -0.0239 -0.0442 0.0389 0.0153

N 140,042 1,975 23,541

Note: The table reports mean and median values for dividend
changes, the earnings, and the return realizations around earning
announcements separately for positive, negative, and no dividends
change. ∆DIV is current quarterly dividend less the prior quarterly
dividend divided by the prior quarterly dividend. Ret(−2,−20) is
daily compounded returns from twenty to two trading days be-
fore the dividend declaration less the daily compounded return to
the value-weighted market portfolio over the same period. E(y−1) is
the sum of the four quarterly earnings before dividend announcements.
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Table 2: Dividend Changes and Future Earning Changes

With ∆DIV Without ∆DIV

∆E(Y+1) ∆E(Y+2) ∆E(Y+3) ∆E(Y+1) ∆E(Y+2) ∆E(Y+3)

∆DIV 0.0255∗∗∗ 0.0182∗∗ 0.0183∗

(5.13) (3.18) (2.67)
Ret(−2,−20) 0.0861∗∗∗ 0.1001∗∗∗ 0.0952∗∗∗ 0.0874∗∗∗ 0.1011∗∗∗ 0.0961∗∗∗

(15.30) (10.81) (9.62) (15.46) (10.83) (9.61)
Ret(−21,−40) 0.0778∗∗∗ 0.0907∗∗∗ 0.0940∗∗∗ 0.0787∗∗∗ 0.0913∗∗∗ 0.0947∗∗∗

(11.45) (10.51) (9.14) (11.53) (10.54) (9.17)
Ret(−41,−60) 0.0744∗∗∗ 0.0841∗∗∗ 0.0792∗∗∗ 0.0752∗∗∗ 0.0847∗∗∗ 0.0797∗∗∗

(11.62) (9.36) (8.26) (11.64) (9.35) (8.25)
Ret(−61,−120) 0.0626∗∗∗ 0.0697∗∗∗ 0.0714∗∗∗ 0.0632∗∗∗ 0.0701∗∗∗ 0.0719∗∗∗

(11.20) (10.06) (9.51) (11.21) (10.07) (9.49)
Ret(−121,−240) 0.0328∗∗∗ 0.0373∗∗∗ 0.0404∗∗∗ 0.0332∗∗∗ 0.0376∗∗∗ 0.0407∗∗∗

(8.26) (8.16) (8.90) (8.25) (8.16) (8.90)
E(q−1) 0.4121∗∗∗ 0.3415∗∗∗ 0.3324∗∗∗ 0.4189∗∗∗ 0.3464∗∗∗ 0.3373∗∗∗

(13.16) (4.74) (3.73) (13.38) (4.80) (3.76)
E(q−2) 0.0664 0.0789 0.1278 0.0669 0.0792 0.1282

(1.78) (1.10) (1.36) (1.79) (1.10) (1.37)
E(q−3) 0.0214 0.0301 0.0603 0.0209 0.0299 0.0602

(0.56) (0.41) (0.64) (0.55) (0.41) (0.64)
E(q−4) -0.0987∗ -0.0611 0.0072 -0.1007∗ -0.0626 0.0056

(-2.05) (-0.81) (0.07) (-2.08) (-0.83) (0.05)
∆E(q−1) 0.4521∗∗∗ 0.2981∗∗∗ 0.2567∗∗ 0.4570∗∗∗ 0.3016∗∗∗ 0.2599∗∗

(8.53) (4.27) (3.22) (8.45) (4.28) (3.24)
∆E(q−2) 0.1613∗∗∗ 0.0781 0.0392 0.1644∗∗∗ 0.0803 0.0410

(4.39) (1.19) (0.49) (4.43) (1.22) (0.51)
∆E(q−3) 0.0745 0.0175 -0.0469 0.0761 0.0185 -0.0459

(1.56) (0.23) (-0.56) (1.57) (0.24) (-0.55)
∆E(q−4) 0.0355 -0.0346 -0.1593 0.0394 -0.0318 -0.1568

(0.67) (-0.42) (-1.36) (0.73) (-0.38) (-1.34)
E(y−1)1− -0.9134∗∗∗ -1.2856∗∗∗ -1.1340∗∗∗ -0.9093∗∗∗ -1.2831∗∗∗ -1.1304∗∗∗

(-7.95) (-6.75) (-4.91) (-7.92) (-6.74) (-4.91)
E2

(y−1)1− 0.4281 -0.4457 2.7144 0.4259 -0.4506 2.7180

(0.46) (-0.32) (1.56) (0.46) (-0.32) (1.56)
E2

(y−1)1+ -0.4650∗∗∗ -0.3625 -0.3088 -0.4650∗∗∗ -0.3625 -0.3086

(-4.21) (-1.97) (-0.96) (-4.18) (-1.97) (-0.96)
∆E(y−1)1− -0.3942∗∗∗ -0.3125∗∗∗ -0.3976∗∗∗ -0.3875∗∗∗ -0.3075∗∗∗ -0.3919∗∗∗

(-7.55) (-4.17) (-4.31) (-7.37) (-4.10) (-4.25)
∆E2

(y−1)1− -0.3989 -0.1843 -0.5319 -0.3666 -0.1604 -0.5053

(-1.65) (-0.71) (-1.80) (-1.51) (-0.62) (-1.71)
∆E2

(y−1)1+ -0.9171∗∗∗ -0.9624∗∗∗ -0.8431∗∗∗ -0.9202∗∗∗ -0.9637∗∗∗ -0.8435∗∗∗

(-5.73) (-5.44) (-4.65) (-5.68) (-5.41) (-4.63)
Constant -0.0068∗∗ 0.0000 0.0042 -0.0063∗ 0.0003 0.0045

(-2.74) (0.00) (0.82) (-2.55) (0.08) (0.88)

Observations 165558 154945 145042 165558 154945 145042
R2 0.1866 0.1137 0.0928 0.1844 0.1132 0.0924
AIC -439292 -287935 -206212 -438850 -287843 -206159
BIC -439081 -287726 -206005 -438650 -287644 -205962

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: Dividend Changes and Future Earning Changes

∆E(Y+1) ∆E(Y+2) ∆E(Y+3)

∆DIV 0.0309∗∗∗ 0.0199∗ 0.0177∗

(4.8521) (2.6698) (2.0712)

Constant 0.0054∗ 0.0126∗∗∗ 0.0217∗∗∗

(2.6461) (3.5530) (4.4272)

Observations 165558 154945 145042

R2 0.0033 0.0007 0.0003

Adjusted R2 0.0033 0.0006 0.0003

AIC -405678 -269371 -192174

BIC -405657 -269351 -192154

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Percentile Rank Dividend Changes and Future Earning Changes

With Div Without Div

∆E(Y+1) ∆E(Y+2) ∆E(Y+3) ∆E(Y+1) ∆E(Y+2) ∆E(Y+3)

rank(∆DIV > 0) 0.0182∗∗∗ 0.0172∗∗∗ 0.0168∗∗∗

(10.13) (5.77) (4.25)
rank(∆DIV < 0) -0.0431∗∗∗ -0.0181∗ -0.0205∗

(-5.46) (-2.26) (-2.21)
Ret(−2,−20) 0.0854∗∗∗ 0.0996∗∗∗ 0.0946∗∗∗ 0.0874∗∗∗ 0.1011∗∗∗ 0.0961∗∗∗

(15.21) (10.75) (9.57) (15.46) (10.83) (9.61)
Ret(−21,−40) 0.0773∗∗∗ 0.0903∗∗∗ 0.0936∗∗∗ 0.0787∗∗∗ 0.0913∗∗∗ 0.0947∗∗∗

(11.41) (10.48) (9.12) (11.53) (10.54) (9.17)
Ret(−41,−60) 0.0738∗∗∗ 0.0837∗∗∗ 0.0788∗∗∗ 0.0752∗∗∗ 0.0847∗∗∗ 0.0797∗∗∗

(11.61) (9.34) (8.26) (11.64) (9.35) (8.25)
Ret(−61,−120) 0.0622∗∗∗ 0.0694∗∗∗ 0.0711∗∗∗ 0.0632∗∗∗ 0.0701∗∗∗ 0.0719∗∗∗

(11.23) (10.08) (9.52) (11.21) (10.07) (9.49)
Ret(−121,−240) 0.0326∗∗∗ 0.0371∗∗∗ 0.0402∗∗∗ 0.0332∗∗∗ 0.0376∗∗∗ 0.0407∗∗∗

(8.28) (8.17) (8.89) (8.25) (8.16) (8.90)
E(q−1) 0.4043∗∗∗ 0.3359∗∗∗ 0.3265∗∗∗ 0.4189∗∗∗ 0.3464∗∗∗ 0.3373∗∗∗

(12.88) (4.67) (3.68) (13.38) (4.80) (3.76)
E(q−2) 0.0622 0.0760 0.1247 0.0669 0.0792 0.1282

(1.67) (1.06) (1.33) (1.79) (1.10) (1.37)
E(q−3) 0.0193 0.0301 0.0599 0.0209 0.0299 0.0602

(0.51) (0.41) (0.64) (0.55) (0.41) (0.64)
E(q−4) -0.1006∗ -0.0619 0.0063 -0.1007∗ -0.0626 0.0056

(-2.09) (-0.82) (0.06) (-2.08) (-0.83) (0.05)
∆E(q−1) 0.4512∗∗∗ 0.2968∗∗∗ 0.2552∗∗ 0.4570∗∗∗ 0.3016∗∗∗ 0.2599∗∗

(8.57) (4.28) (3.21) (8.45) (4.28) (3.24)
∆E(q−2) 0.1620∗∗∗ 0.0775 0.0386 0.1644∗∗∗ 0.0803 0.0410

(4.39) (1.18) (0.48) (4.43) (1.22) (0.51)
∆E(q−3) 0.0742 0.0159 -0.0483 0.0761 0.0185 -0.0459

(1.54) (0.21) (-0.58) (1.57) (0.24) (-0.55)
∆E(q−4) 0.0358 -0.0354 -0.1600 0.0394 -0.0318 -0.1568

(0.67) (-0.43) (-1.36) (0.73) (-0.38) (-1.34)
E(y−1)1− -0.9121∗∗∗ -1.2838∗∗∗ -1.1319∗∗∗ -0.9093∗∗∗ -1.2831∗∗∗ -1.1304∗∗∗

(-7.97) (-6.77) (-4.92) (-7.92) (-6.74) (-4.91)
E2

(y−1)1− 0.4390 -0.4321 2.7291 0.4259 -0.4506 2.7180

(0.47) (-0.31) (1.57) (0.46) (-0.32) (1.56)
E2

(y−1)1+ -0.4620∗∗∗ -0.3640 -0.3093 -0.4650∗∗∗ -0.3625 -0.3086

(-4.18) (-1.98) (-0.97) (-4.18) (-1.97) (-0.96)
∆E(y−1)1− -0.4067∗∗∗ -0.3222∗∗∗ -0.4071∗∗∗ -0.3875∗∗∗ -0.3075∗∗∗ -0.3919∗∗∗

(-7.78) (-4.30) (-4.43) (-7.37) (-4.10) (-4.25)
∆E2

(y−1)1− -0.4427 -0.2257 -0.5717 -0.3666 -0.1604 -0.5053

(-1.83) (-0.87) (-1.93) (-1.51) (-0.62) (-1.71)
∆E2

(y−1)1+ -0.9023∗∗∗ -0.9491∗∗∗ -0.8299∗∗∗ -0.9202∗∗∗ -0.9637∗∗∗ -0.8435∗∗∗

(-5.63) (-5.36) (-4.56) (-5.68) (-5.41) (-4.63)
Constant -0.0071∗∗ -0.0006 0.0037 -0.0063∗ 0.0003 0.0045

(-2.84) (-0.14) (0.71) (-2.55) (0.08) (0.88)

Observations 165558 154945 145042 165558 154945 145042
R2 0.1885 0.1145 0.0933 0.1844 0.1132 0.0924
AIC -439676 -288066 -206289 -438850 -287843 -206159
BIC -439456 -287847 -206071 -438650 -287644 -205962

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Percentile Rank Dividend Changes and Future Gross Profit Changes

With Div Without Div

∆GP(Y+1) ∆GP(Y+2) ∆GP(Y+3) ∆GP(Y+1) ∆GP(Y+2) ∆GP(Y+3)

rank(∆DIV > 0) 0.0132∗∗∗ 0.0203∗∗∗ 0.0244∗∗∗

(5.82) (4.60) (3.59)
rank(∆DIV < 0) -0.0204∗∗∗ -0.0306∗∗∗ -0.0422∗∗

(-3.58) (-3.67) (-3.42)
Ret(−2,−20) 0.0687∗∗∗ 0.0973∗∗∗ 0.1247∗∗∗ 0.0699∗∗∗ 0.0993∗∗∗ 0.1271∗∗∗

(11.08) (7.53) (8.26) (11.34) (7.73) (8.47)
Ret(−21,−40) 0.0685∗∗∗ 0.1112∗∗∗ 0.1396∗∗∗ 0.0696∗∗∗ 0.1128∗∗∗ 0.1415∗∗∗

(10.10) (9.43) (9.74) (10.29) (9.57) (9.89)
Ret(−41,−60) 0.0561∗∗∗ 0.0916∗∗∗ 0.1113∗∗∗ 0.0571∗∗∗ 0.0929∗∗∗ 0.1130∗∗∗

(6.87) (5.90) (6.08) (6.97) (5.96) (6.11)
Ret(−61,−120) 0.0460∗∗∗ 0.0735∗∗∗ 0.1019∗∗∗ 0.0468∗∗∗ 0.0746∗∗∗ 0.1033∗∗∗

(7.64) (7.08) (8.00) (7.72) (7.15) (8.04)
Ret(−121,−240) 0.0175∗∗∗ 0.0335∗∗∗ 0.0569∗∗∗ 0.0181∗∗∗ 0.0343∗∗∗ 0.0579∗∗∗

(3.80) (4.89) (6.20) (3.89) (4.98) (6.28)
GP(q−1) 0.2814∗∗∗ 0.3623∗∗∗ 0.4806∗∗∗ 0.2870∗∗∗ 0.3712∗∗∗ 0.4917∗∗∗

(17.71) (8.72) (8.34) (17.81) (8.80) (8.50)
GP(q−2) -0.0244 -0.0221 0.0271 -0.0227 -0.0192 0.0312

(-1.54) (-0.95) (0.65) (-1.43) (-0.82) (0.74)
GP(q−3) -0.0440∗ -0.0339 -0.0192 -0.0455∗ -0.0364 -0.0222

(-2.29) (-0.99) (-0.43) (-2.34) (-1.05) (-0.50)
GP(q−4) -0.1785∗∗∗ -0.1640∗∗∗ -0.1690∗∗∗ -0.1780∗∗∗ -0.1636∗∗∗ -0.1693∗∗∗

(-12.37) (-5.34) (-3.75) (-12.25) (-5.29) (-3.73)
∆GP(q−1) 1.3415∗∗∗ 1.4852∗∗∗ 1.7118∗∗∗ 1.3463∗∗∗ 1.4920∗∗∗ 1.7202∗∗∗

(37.30) (21.99) (16.68) (36.79) (21.89) (16.66)
∆GP(q−2) 0.0587 0.2217∗∗∗ 0.2972∗∗ 0.0599 0.2237∗∗∗ 0.2995∗∗

(1.58) (3.63) (3.37) (1.61) (3.66) (3.39)
∆GP(q−3) -0.2176∗∗∗ -0.0787 0.0304 -0.2148∗∗∗ -0.0740 0.0357

(-5.95) (-1.13) (0.27) (-5.85) (-1.06) (0.32)
∆GP(q−4) 0.1762∗∗∗ 0.4717∗∗∗ 0.7095∗∗∗ 0.1811∗∗∗ 0.4793∗∗∗ 0.7186∗∗∗

(5.07) (6.85) (7.39) (5.16) (6.88) (7.41)
GP(y−1)1− 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(.) (.) (.) (.) (.) (.)
GP 2

(y−1)1− 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(.) (.) (.) (.) (.) (.)
GP 2

(y−1)1+ 0.0357∗∗∗ 0.0713∗∗∗ 0.0989∗∗∗ 0.0346∗∗∗ 0.0695∗∗∗ 0.0968∗∗∗

(5.20) (4.65) (4.13) (5.07) (4.53) (4.04)
∆GP(y−1)1− -0.2081∗∗∗ -0.4587∗∗∗ -0.7280∗∗∗ -0.1953∗∗∗ -0.4398∗∗∗ -0.7034∗∗∗

(-4.27) (-4.22) (-4.78) (-3.88) (-4.03) (-4.63)
∆GP 2

(y−1)1− 1.8078∗∗∗ 2.7158∗∗∗ 2.9671∗∗∗ 1.8882∗∗∗ 2.8379∗∗∗ 3.1195∗∗∗

(4.22) (4.19) (3.56) (4.33) (4.36) (3.76)
∆GP 2

(y−1)1+ -0.1736∗∗ -0.4113∗∗∗ -0.5642∗∗ -0.1782∗∗ -0.4183∗∗∗ -0.5725∗∗

(-3.15) (-3.89) (-2.94) (-3.20) (-3.93) (-2.97)
Constant 0.0050∗∗∗ 0.0105∗∗∗ 0.0150∗∗∗ 0.0053∗∗∗ 0.0110∗∗∗ 0.0156∗∗∗

(4.28) (4.17) (4.01) (4.56) (4.35) (4.09)
Observations 134439 124683 115986 134439 124683 115986
R2 0.2902 0.1994 0.1945 0.2890 0.1985 0.1938
AIC -331422 -148327 -55913 -331189 -148187 -55818
BIC -331226 -148132 -55720 -331012 -148012 -55644

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Machine Learning Regressions vs OLS Regression

With ∆DIV Without ∆DIV

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Panel A: All Variables

GBT (OOS) 0.2702 0.2093 0.1723 0.2662 0.2110 0.1750

RF (OOS) 0.1808 0.1808 0.1471 0.1808 0.1590 0.1471

GBT (IS) 0.5161 0.4526 0.4263 0.5188 0.5188 0.4232

RF (IS) 0.1971 0.1741 0.1645 0.1971 0.1741 0.1645

OLS (IS) 0.1866 0.1137 0.0928 0.1844 0.1132 0.0924

Panel B: Without Interaction Variables

GBT (OOS) 0.2441 0.1826 0.1463 0.2406 0.1874 0.1491

RF (OOS) 0.1266 0.1111 0.1044 0.1267 0.1112 0.1044

GBT (IS) 0.4976 0.4335 0.4038 0.4980 0.4335 0.4044

RF (IS) 0.1466 0.1276 0.1217 0.1466 0.1276 0.1217

OLS (IS) 0.1215 0.0682 0.0518 0.1198 0.0679 0.0515

Note: The table reports the R-squared for Gradient Boosting Trees
(GBT) regressions, Random Forests (RF) regressions, and Ordinary Least
Squares (OLS) regressions. The regressions evaluate the relation between
dividend changes (∆DIV ) and unexpected changes in future earnings in
three years post dividend announcements. Panel A shows regression re-
sults with all variables as in Ham et al. (2020). Panel B shows regres-
sion results without interaction variables. The left (right) panel reports
results for model 1 (2) with (without) ∆DIV as a covariate. Out-of-
sample (OOS) R-squared refers to the average R-squared using 10-fold
cross-validation.

22



Table 7: Evaluation Results Classification Models

XGBoost Random Forests

Class 0 Class 1 W-Avg Class 0 Class 1 W-Avg

Panel A: Baseline Majority Class (ZeroR Classifier)

Accuracy 0.5933 0.6398

Panel B: Dividends Only - One Feature

Accuracy 0.6007 0.6007

AUC 0.54 +/-0.01 0.54 +/-0.01

Precision 0.71 0.6 0.64 0.69 0.6 0.64

Recall 0.03 0.99 0.60 0.03 0.99 0.60

F1 Score 0.06 0.75 0.47 0.06 0.75 0.47

Support 24,890 36,315 61,205 24,890 36,315 61,205

Panle C: Full Model with Ablation Study

Accuracy 0.9384 0.9688

AUC 0.96 +/-0.11 0.96 +/-0.11

Precision 0.93 0.94 0.94 0.97 0.97 0.97

Recall 0.91 0.96 0.94 0.95 0.98 0.97

F1 Score 0.92 0.95 0.94 0.96 0.97 0.97

Support 24,890 36,315 61,205 24,890 36,315 61,205

Panel D: Full Model without Ablation Study

Accuracy 0.9373 0.9690

AUC 0.96 +/-0.11 0.96 +/-0.11

Percision 0.94 0.94 0.94 0.97 0.97 0.97

Recall 0.91 0.96 0.94 0.95 0.98 0.97

F1 Score 0.92 0.95 0.94 0.96 0.97 0.97

Support 24,890 36,315 61,205 24,890 36,315 61,205

Note: The table reports the performance of Gradient Boosting Tree classifier
(XGBoost) and Random Forests Classifier. Panel A reports the accuracy of Ze-
roR classifier, in which the model assign the majority category to each observa-
tion. Panel B reports model performance using Accuracy, Precision, Recall, and
F1-Score for the model that only contains ∆DIV . Panel C (D) reports similar
statistics for the full model including all covariates with (without) ablation study.
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Table 8: Feature Importance Classification Models

XGBoost Random Forest

W/ Ablation W/out Ablation W/ Ablation W/out Ablation

∆E(q−1) 0.113 ∆E(q−1) 0.110 ∆E(q−1) 0.080 ∆E(q−1) 0.082

E2
(y−1)1+ 0.089 E2

(y−1)1+ 0.098 ret(−61,−120) 0.068 ret(−61,−120) 0.069

E(q−1) 0.068 ret(−61,−120) 0.065 ret(−121,−240) 0.067 ret(−121,−240) 0.068

ret(−2,−20) 0.068 E(q−4) 0.065 ret(−2,−20) 0.065 ret(−2,−20) 0.066

ret(−61,−120) 0.066 ret(−2,−20) 0.065 E(q−4) 0.065 E(q−4) 0.066

E(q−4) 0.064 ret(−121,−240) 0.065 ret(−21,−40) 0.064 ret(−21,−40) 0.065

ret(−121,−240) 0.063 E(q−1) 0.064 E(q−1) 0.063 E(q−1) 0.064

E(q−2) 0.061 ∆E(q−2) 0.059 E2
(y−1)1+ 0.063 E2

(y−1)1+ 0.064

∆E(q−2) 0.058 E(q−2) 0.059 ret(−41,−60) 0.062 ret(−41,−60) 0.063

ret(−41,−60) 0.056 ∆E(q−4) 0.059 E(q−3) 0.060 E(q−3) 0.061

∆E(q−4) 0.056 ∆E(q−4) 0.058 ∆E(q−2) 0.059 ∆E(q−2) 0.060

E(q−3) 0.054 ret(−41,−60) 0.055 E(q−2) 0.059 E(q−2) 0.060

∆E(q−4) 0.053 ret(−21,−40) 0.055 ∆E(q−4) 0.059 ∆E(q−4) 0.059

ret(−21,−40) 0.053 E(q−3) 0.054 ∆E(q−4) 0.057 ∆E(q−4) 0.058

∆E2
(y−1)1+ 0.032 ∆E2

(y−1)1+ 0.036 ∆E2
(y−1)1+ 0.038 ∆E2

(y−1)1+ 0.038

∆Div 0.014 ∆E2
(y−1)1− 0.015 ∆E(y−1)1− 0.022 ∆E2

(y−1)1− 0.022

∆E2
(y−1)1− 0.012 ∆E(y−1)1− 0.008 E2

(y−1)1− 0.022 ∆E(y−1)1− 0.021

∆E(y−1)1− 0.009 E2
(y−1)1− 0.008 ∆Div 0.014 E(y−1)1− 0.007

E2
(y−1)1− 0.007 E(y−1)1− 0.003 E2

(y−1)1− 0.006 E2
(y−1)1− 0.006

E(y−1)1− 0.004 E(y−1)1− 0.006

Note: The table reports feature (variable) importance scores for a Gradient Boosting Trees (XGBoost) and
a Random Forest (RF) classifiers. Both models are trained with all the covariates as in Ham et al. (2020).
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Table 9: VIF in Earnings Prediction

With ∆DIV Without ∆DIV

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

E(y−1)1− 19.77 19.76 19.45 19.77 19.76 19.45

E2
(y−1)1− 17.29 17.27 17.01 17.29 17.27 17.01

∆E(y−1)1− 14.14 14.08 14.04 14.13 14.07 14.04

∆E2
(y−1)1− 9.51 9.48 9.47 9.51 9.47 9.46

E2
(y−1)1+ 7.71 7.85 7.95 7.71 7.85 7.95

E(q−1) 3.16 3.18 3.18 3.16 3.17 3.18

E(q−2) 3.11 3.13 3.15 3.11 3.13 3.15

∆E2
(y−1)1+ 2.93 2.95 2.96 2.93 2.95 2.96

E(q−3) 2.88 2.9 2.91 2.88 2.9 2.91

E(q−4) 2.76 2.78 2.79 2.76 2.78 2.79

∆E(q−2) 2.62 2.64 2.66 2.62 2.64 2.66

∆E(q−1) 2.58 2.59 2.6 2.58 2.58 2.6

∆E(q−3) 2.54 2.56 2.58 2.54 2.56 2.58

∆E(q−4) 2.4 2.42 2.42 2.4 2.42 2.42

Ret(−121,−240) 1.15 1.15 1.15 1.15 1.15 1.15

Ret(−61,−120) 1.06 1.06 1.06 1.06 1.06 1.06

Ret(−41,−60) 1.02 1.02 1.02 1.02 1.02 1.02

∆DIV 1.02 1.02 1.02

Ret(−21,−40) 1.02 1.02 1.02 1.02 1.02 1.02

Ret(−2,−20) 1.02 1.02 1.02 1.02 1.02 1.02

Mean 4.98 4.99 4.97 5.19 5.2 5.18

Note: The table presents Variance Inflation Factor (VIF) in regression of earn-
ing changes in the upcoming three years post earning announcement on several
independent variables. The initial OLS regression is reported in Table 2. VIF
quantify the extent to which the variance (or standard error) of the estimated
regression coefficient is inflated due to collinearity. V IFi for each indepen-
dent variable is computed as V IFi = 1/(1−R2

i ), where R2
i is the unadjusted

coefficient of determination for regressing the ith independent variable on the
remaining ones. If R2 is equal to 0, the variance of the remaining independent
variables cannot be predicted from the ith independent variable. Thus, when
VIF is equal to 1, the ith independent variable is not correlated to the remaining
ones, which means multicollinearity does not exist in this regression model.
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Figure 1: Feature Importance in Gradient Boosting Regression Trees OOS
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Note: The figure reports the out-of-sample feature (variable) importance for all the covariates in gradient
boosting regression trees. Feature importance are sorted based on the most to the least important variables
in predicting one-year, two-year and three-year ahead earning changes with (the left panel) and without
(the right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance
of the model is measured by R2.
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Figure 2: Feature Importance in Gradient Boosting Regression Trees without Interaction Variables OOS
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Note: The figure reports the out-of-sample feature (variable) importance for all but the control covariates in
gradient boosting regression trees. Feature importance are sorted based on the most to the least important
variables in predicting one-year, two-year and three-year ahead earnings with (the left panel) and without
(the right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance
of the model is measured by R2.
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Figure 3: Feature Importance in Gradient Boosting Regression Trees IS
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(f) Year 3 without ∆DIV

Note: The figure reports the in-sample feature (variable) importance for all the covariates in gradient
boosting regression trees. Feature importance are sorted based on the most to the least important variables
in predicting one-year, two-year and three-year ahead earning changes with (the left panel) and without
(the right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance
of the model is measured by R2.
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Figure 4: Feature Importance in Gradient Boosting Regression Trees without Interaction Variables IS
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Note: The figure reports the in-sample feature (variable) importance for all but the control covariates in
gradient boosting regression trees. Feature importance are sorted based on the most to the least important
variables in predicting one-year, two-year and three-year ahead earnings with (the left panel) and without
(the right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance
of the model is measured by R2.
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Figure 5: Feature Importance in Random Forest IS
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regression trees. Feature importance are sorted based on the most to the least important variables in
predicting one-year, two-year and three-year ahead earning changes with (the left panel) and without (the
right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance of
the model is measured by R2. 30



Figure 6: Feature Importance in Random Forest without Interaction Variables IS
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Figure 7: Feature Importance in Random Forest OOS
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Figure 8: Feature Importance in Random Forest without Interaction Variables OOS

0 0.1 0.2 0.3 0.4

∆DIV

Ret(−21,−40)

Ret(−41,−60)

Ret(−121,−240)

∆E(q−2)

Ret(−2,−20)

Ret(−61,−120)

∆E(q−3)

E(q−1)

∆E(q−1)

∆E(q−4)

E(q−2)

E(q−3)

E(q−4)

(a) Year 1 with ∆DIV

0 0.1 0.2 0.3 0.4

Ret(−21,−40)

Ret(−41,−60)

Ret(−121,−240)

∆E(q−2)

Ret(−2,−20)

Ret(−61,−120)

∆E(q−3)

E(q−1)

∆E(q−1)

∆E(q−4)

E(q−2)

E(q−3)

E(q−4)

(b) Year 1 without ∆DIV

0 0.1 0.2 0.3 0.4

∆DIV

Ret(−2,−20)

Ret(−21,−40)

Ret(−41,−60)

∆E(q−1)

Ret(−121,−240)

Ret(−61,−120)

∆E(q−2)

∆E(q−3)

∆E(q−4)

E(q−1)

E(q−2)

E(q−3)

E(q−4)

(c) Year 2 with ∆DIV

0 0.1 0.2 0.3 0.4

Ret(−2,−20)

Ret(−21,−40)

Ret(−41,−60)

∆E(q−1)

Ret(−121,−240)

Ret(−61,−120)

∆E(q−2)

∆E(q−3)

∆E(q−4)

E(q−1)

E(q−2)

E(q−3)

E(q−4)

(d) Year 2 without ∆DIV

0 0.1 0.2 0.3 0.4

∆DIV

Ret(−21,−40)

Ret(−2,−20)

Ret(−41,−60)

Ret(−121,−240)

Ret(−61,−120)

∆E(q−1)

∆E(q−2)

∆E(q−3)

∆E(q−4)

E(q−1)

E(q−2)

E(q−4)

E(q−3)

(e) Year 3 with ∆DIV

0 0.1 0.2 0.3 0.4

Ret(−21,−40)

Ret(−2,−20)

Ret(−41,−60)

Ret(−121,−240)

Ret(−61,−120)

∆E(q−1)

∆E(q−2)

∆E(q−3)

∆E(q−4)

E(q−1)

E(q−2)

E(q−4)

E(q−3)

(f) Year 3 without ∆DIV

Note: The figure reports the in-sample feature (variable) importance for all the covariates in random forest
regression trees. Feature importance are sorted based on the most to the least important variables in
predicting one-year, two-year and three-year ahead earning changes with (the left panel) and without (the
right panel) dividend changes as a covariate. Feature importance sums to one. The overall performance of
the model is measured by R2. 33



Figure 9: Feature Importance vs Mean SHAP Value in Gradient Boosting Trees OOS
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Figure 10: Feature Importance vs Mean SHAP Value in Gradient Boosting Trees without ∆Div OOS
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Note: feature importance (left), mean shap value (right), GBR, OOS
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